On xn + x + 1 over GF(2)

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE DIOPHANTINE EQUATION xn − 1 x −

We prove that if (x, y, n, q) 6= (18, 7, 3, 3) is a solution of the Diophantine equation (xn−1)/(x−1) = y with q prime, then there exists a prime number p such that p divides x and q divides p − 1. This allows us to solve completely this Diophantine equation for infinitely many values of x. The proofs require several different methods in diophantine approximation together with some heavy comput...

متن کامل

A Note on the Nonlinear Recurrence xn + 1 xn − 1 − x 2 n = A Michele Elia

The existence and uniqueness of the integral solutions of xn+1xn−1− xn = A are examined and some open questions settled. Mathematics Subject Classification: 39A99, 12F05, 11B39

متن کامل

On the Recursive Sequence xn 1 max { xn , A } / x 2 nxn − 1

Max-type difference equations stem from, for example, certain models in automatic control theory see 1, 2 . Althoughmax-type difference equations are relatively simple in form, it is, unfortunately, extremely difficult to understand thoroughly the behavior of their solutions, see, for example, 1–41 and the relevant references cited therein. Furthermore, difference equation appear naturally as a...

متن کامل

Periodicity and convergence for xn + 1 = | xn − xn − 1 |

Each solution {xn} of the equation in the title is either eventually periodic with period 3 or else, it converges to zero—which case occurs depends on whether the ratio of the initial values of {xn} is rational or irrational. Further, the sequence of ratios {xn/xn−1} satisfies a first-order difference equation that has periodic orbits of all integer periods except 3. p-cycles for each p = 3 are...

متن کامل

ON BOUNDEDNESS OF THE SOLUTIONS OF THE DIFFERENCE EQUATION xn+1=xn-1/(p+xn)

Theorem 1. (i) If p > 1, then the unique equilibrium 0 of (1) is globally asymptotically stable. (ii) If p = 1, then every positive solution of (1) converges to a period-two solution. (iii) If 0 < p < 1, then 0 and x = 1− p are the only equilibrium points of (1), and every positive solution {xn}n=−1 of (1) with (xN − x)(xN+1 − x) < 0 for some N ≥ −1 is unbounded. They proposed the following ope...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information and Control

سال: 1970

ISSN: 0019-9958

DOI: 10.1016/s0019-9958(70)90264-0